Improved Wet Air Oxidation Pretreatment for Enhanced Enzymatic Hydrolysis of Rice Husk for Bioethanol Production
نویسندگان
چکیده
Pretreatment of rice husk by the Alkaline Peroxide Assisted Wet Air Oxidation (APAWAO) approach enhanced the enzymatic convertibility of cellulose in APAWAO-pretreated rice husk. The present work describes the structural changes in rice husk brought about by APAWAO pretreatment by means of Scanning Electron Microscopy (SEM). The SEM images illustrate the extensive loss of biomass integrity following APAWAO pretreatment. X-ray diffraction (XRD) studies indicated the loss of amorphous lignin following APAWAO to be a factor contributing to the enhanced enzymatic digestibility of pre-treated rice husk. _____________________________________________________________________________________________________________
منابع مشابه
Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production
Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...
متن کاملSurfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...
متن کاملKinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk
In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...
متن کاملDelignification of Rice Husk and Production of Bioethanol
Lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide containing large reservoirs of energy that provide real potential ...
متن کاملEnhanced saccharification of lignocellulosic agricultural biomass and increased bioethanol titre using acclimated Clostridium thermocellum DSM1313
Consolidated bioprocess assures an efficient lignocellulosic conversion to fermentable sugars and subsequently to bioethanol. Such a single-step hydrolysis and anaerobic fermentation was achieved with acclimated Clostridium thermocellum DSM 1313 on different mildly pre-treated agricultural lignocellulosic residues without any additional enzymes/and strains. Acclimation was achieved by serially ...
متن کامل